Oxidation by 2-oxoglutarate oxygenases: non-haem iron systems in catalysis and signalling

Author:

Hewitson K.S1,Granatino N1,Welford R.W.D1,McDonough M.A1,Schofield C.J1

Affiliation:

1. The Department of Chemistry and The Oxford Centre for Molecular Sciences, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK

Abstract

The 2-oxoglutarate (2OG) and ferrous iron dependent oxygenases are a superfamily of enzymes that catalyse a wide range of reactions including hydroxylations, desaturations and oxidative ring closures. Recently, it has been discovered that they act as sensors in the hypoxic response in humans and other animals. Substrate oxidation is coupled to conversion of 2OG to succinate and carbon dioxide. Kinetic, spectroscopic and structural studies are consistent with a consensus mechanism in which ordered binding of (co)substrates enables control of reactive intermediates. Binding of the substrate to the active site triggers the enzyme for ligation of dioxygen to the metal. Oxidative decarboxylation of 2OG then generates the ferryl species thought to mediate substrate oxidation. Structural studies reveal a conserved double-stranded β-helix core responsible for binding the iron, via a 2His-1carboxylate motif and the 2OG side chain. The rigidity of this core contrasts with the conformational flexibility of surrounding regions that are involved in binding the substrate. Here we discuss the roles of 2OG oxygenases in terms of the generic structural and mechanistic features that render the 2OG oxygenases suited for their functions.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3