Hierarchical porous materials for tissue engineering

Author:

Jones Julian R1,Lee Peter D1,Hench Larry L1

Affiliation:

1. Department of Materials, Imperial College LondonSouth Kensington campus, London SW7 2AZ, UK

Abstract

Biological organisms have evolved to produce hierarchical three-dimensional structures with dimensions ranging from nanometres to metres. Replicating these complex living hierarchical structures for the purpose of repair or replacement of degenerating tissues is one of the great challenges of chemistry, physics, biology and materials science. This paper describes how the use of hierarchical porous materials in tissue engineering applications has the potential to shift treatments from tissue replacement to tissue regeneration. The criteria that a porous material must fulfil to be considered ideal for bone tissue engineering applications are listed. Bioactive glass foam scaffolds have the potential to fulfil all the criteria, as they have a hierarchical porous structure similar to that of trabecular bone, they can bond to bone and soft tissue and they release silicon and calcium ions that have been found to up-regulate seven families of genes in osteogenic cells. Their hierarchical structure can be tailored for the required rate of tissue bonding, resorption and delivery of dissolution products. This paper describes how the structure and properties of the scaffolds are being optimized with respect to cell response and that tissue culture techniques must be optimized to enable growth of new bone in vitro .

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 149 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3