Cationic liposome–DNA complexes: from liquid crystal science to gene delivery applications

Author:

Safinya Cyrus R123,Ewert Kai123,Ahmad Ayesha123,Evans Heather M123,Raviv Uri123,Needleman Daniel J123,Lin Alison J123,Slack Nelle L123,George Cyril3,Samuel Charles E3

Affiliation:

1. Department of Materials, Biomolecular Science & Engineering Programme, University of CaliforniaSanta Barbara, CA 93106, USA

2. Department of Physics, Biomolecular Science & Engineering Programme, University of CaliforniaSanta Barbara, Santa Barbara, CA 93106, USA

3. Molecular, Cellular & Developmental Biology Department, Biomolecular Science & Engineering Programme, University of California. Santa Barbara, CA 93106, USA

Abstract

At present, there is an unprecedented level of interest in the properties and structures of complexes consisting of DNA mixed with oppositely charged cationic liposomes (CLs). The interest arises because the complexes mimic natural viruses as chemical carriers of DNA into cells in worldwide human gene therapy clinical trials. However, since our understanding of the mechanisms of action of CL–DNA complexes interacting with cells remains poor, significant additional insights and discoveries will be required before the development of efficient chemical carriers suitable for long-term therapeutic applications. Recent studies describe synchrotron X-ray diffraction, which has revealed the liquid crystalline nature of CL–DNA complexes, and three-dimensional laser-scanning confocal microscopy, which reveals CL–DNA pathways and interactions with cells. The importance of the liquid crystalline structures in biological function is revealed in the application of these modern techniques in combination with functional transfection efficiency measurements, which shows that the mechanism of gene release from complexes in the cell cytoplasm is dependent on their precise liquid crystalline nature and the physical and chemical parameters (for example, the membrane charge density) of the complexes. In §5 , we describe some recent new results aimed at developing bionanotube vectors for gene delivery.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3