Multiscale, multiorgan and multivariate complexity analyses of cardiovascular regulation

Author:

Cerutti Sergio1,Hoyer Dirk2,Voss Andreas3

Affiliation:

1. Department of Bioengineering, IIT UNIT, Politecnico di MilanoMilano 20133, Italy

2. Biomagnetic Centre, Department of Neurology, Friedrich Schiller University07740 Jena, Germany

3. Department of Medical and Biological Engineering, University of Applied Sciences Jena07745 Jena, Germany

Abstract

Cardiovascular system complexity is confirmed by both its generally variegated structure of physiological modelling and the richness of information detectable from processing of the signals involved in it, with strong linear and nonlinear interactions with other biological systems. In particular, this behaviour may be accordingly described by means of what we call MMM paradigm (i.e. multiscale, multiorgan and multivariate). Such an approach to the cardiovascular system emphasizes where the genesis of its complexity is potentially allocated and how it is possible to detect information from it. No doubt that processing signals from multi-leads of the same system (multivariate), from the interaction of different physiological systems (multiorgan) and integrating all this information across multiple scales (from genes, to proteins, molecules, cells, up to the whole organ) could really provide us with a more complete look at the overall phenomenon of cardiovascular system complexity, with respect to the one which is obtainable from its single constituent parts. In this paper, some examples of approaches are discussed for investigating the cardiovascular system in different time and spatial scales, in studying a different organ involvement (such as sleep, depression and multiple organ dysfunction) and in using a multivariate approach via various linear and nonlinear methods for cardiovascular risk stratification and pathology assessment.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3