El Niño–Southern Oscillation, Pliocene climate and equifinality

Author:

Bonham Sarah G1,Haywood Alan M1,Lunt Daniel J23,Collins Mathew4,Salzmann Ulrich3

Affiliation:

1. School of Earth and Environment, University of LeedsLeeds LS2 9JT, UK

2. School of Geographical Sciences, University of BristolUniversity Road, Bristol BS8 1SS, UK

3. Geological Sciences Division, British Antarctic SurveyHigh Cross, Madingley Road, Cambridge CB3 0ET, UK

4. Met Office, Hadley CentreFitzRoy Road, Exeter EX1 3PB, UK

Abstract

It has been suggested that, during the Pliocene ( ca 5–1.8 Ma), an El Niño state existed as a permanent rather than an intermittent feature; that is, the tropical Pacific Ocean was characterized by a much weaker east–west gradient than today. One line of inquiry used to investigate this idea relates modern El Niño teleconnections to Pliocene proxy data by comparing regional differences in precipitation and surface temperature with climate patterns associated with present-day El Niño events, assuming that agreement between Pliocene data and observations of modern El Niño events supports this interpretation. Here, we examine this assumption by comparing outputs from a suite of Mid-Pliocene climate simulations carried out with the UK Met Office climate model. Regional patterns of climate change associated with changes in model boundary conditions are compared with observed El Niño–Southern Oscillation teleconnection patterns. Our results indicate that many of the proposed ‘permanent El Niño’ surface temperature and precipitation patterns are observable in Mid-Pliocene climate simulations even when they display variability in tropical Pacific sea surface temperatures (SSTs) or when forced with a modern east–west SST gradient. Our experiments highlight the possibility that the same outcome may be achieved through different initial conditions (equifinality); an important consideration for reconstructed patterns of regional Mid-Pliocene climate.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3