Methane and nitrous oxide in the ice core record

Author:

Wolff Eric1,Spahni Renato2

Affiliation:

1. British Antarctic SurveyHigh Cross, Madingley Road, Cambridge CB3 0ET, UK

2. Climate and Environmental Physics, Physics Institute, University of BernSidlerstrasse 5, 3012 Bern, Switzerland

Abstract

Polar ice cores contain, in trapped air bubbles, an archive of the concentrations of stable atmospheric gases. Of the major non-CO 2 greenhouse gases, methane is measured quite routinely, while nitrous oxide is more challenging, with some artefacts occurring in the ice and so far limited interpretation. In the recent past, the ice cores provide the only direct measure of the changes that have occurred during the industrial period; they show that the current concentration of methane in the atmosphere is far outside the range experienced in the last 650 000 years; nitrous oxide is also elevated above its natural levels. There is controversy about whether changes in the pre-industrial Holocene are natural or anthropogenic in origin. Changes in wetland emissions are generally cited as the main cause of the large glacial–interglacial change in methane. However, changing sinks must also be considered, and the impact of possible newly described sources evaluated. Recent isotopic data appear to finally rule out any major impact of clathrate releases on methane at these time-scales. Any explanation must take into account that, at the rapid Dansgaard–Oeschger warmings of the last glacial period, methane rose by around half its glacial–interglacial range in only a few decades. The recent EPICA Dome C (Antarctica) record shows that methane tracked climate over the last 650 000 years, with lower methane concentrations in glacials than interglacials, and lower concentrations in cooler interglacials than in warmer ones. Nitrous oxide also shows Dansgaard–Oeschger and glacial–interglacial periodicity, but the pattern is less clear.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3