Nasal architecture: form and flow

Author:

Doorly D.J1,Taylor D.J12,Gambaruto A.M1,Schroter R.C2,Tolley N3

Affiliation:

1. Department of Aeronautics, Imperial College LondonLondon SW7 2AZ, UK

2. Department of Bioengineering, Imperial College LondonLondon SW7 2AZ, UK

3. ENT Surgery at St Mary's Hospital, Imperial College LondonLondon SW7 2AZ, UK

Abstract

Current approaches to model nasal airflow are reviewed in this study, and new findings presented. These new results make use of improvements to computational and experimental techniques and resources, which now allow key dynamical features to be investigated, and offer rational procedures to relate variations in anatomical form. Specifically, both replica and simplified airways of a single subject were investigated and compared with the replica airways of two other individuals with overtly differing geometries. Procedures to characterize and compare complex nasal airway geometry are first outlined. It is then shown that coupled computational and experimental studies, capable of obtaining highly resolved data, reveal internal flow structures in both intrinsically steady and unsteady situations. The results presented demonstrate that the intimate relation between nasal form and flow can be explored in greater detail than hitherto possible. By outlining means to compare complex airway geometries and demonstrating the effects of rational geometric simplification on the flow structure, this work offers a fresh approach to studies of how natural conduits guide and control flow. The concepts and tools address issues that are thus generic to flow studies in other physiological systems.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference37 articles.

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3