A new strategy for assessing sensitivities in biochemical models

Author:

Sahle Sven1,Mendes Pedro23,Hoops Stefan3,Kummer Ursula1

Affiliation:

1. Department Modeling of Biological Processes, Institute for Zoology/BIOQUANTIm Neuenheimer Feld 267, 69120 Heidelberg, Germany

2. School of Computer Science and Manchester Centre for Integrative Systems Biology, University of ManchesterOxford Road, Manchester M13 9PL, UK

3. Virginia Bioinformatics Institute, Virginia TechWashington Street 0477, Blacksburg, VA 24061, USA

Abstract

An integral part of any systems biology approach is the modelling and simulation of the respective system under investigation. However, the values of many parameters of the system have often not been determined or are not identifiable due to technical experimental difficulties or other constraints. Sensitivity analysis is often employed to quantify the importance of each of the model's parameters in the behaviour of the system. This approach can also be useful in identifying those parts of the system that are most sensitive with the potential of becoming drug targets. A problem of the commonly used methods of sensitivity analysis is that they constitute local methods meaning that they depend directly on the exact parameter space, which in turn is not known exactly. One way to circumvent this problem is to carry out sensitivity analysis over a wide range of values for all parameters, but this is handicapped by expensive computations when the systems are high dimensional. Another approach is to employ global sensitivity analysis, which in this context is mostly based on random sampling methods. In this paper we present an efficient approach that involves using numerical optimizing methods that search a wide region of parameter space for a given model to determine the maximum and minimum values of its metabolic control coefficients. A relevant example for drug development is presented to demonstrate the strategy using the software COPASI.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3