Multi-spike solutions of a hybrid reaction–transport model

Author:

Bressloff P. C.1ORCID

Affiliation:

1. Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, UT 84112, USA

Abstract

Simulations of classical pattern-forming reaction–diffusion systems indicate that they often operate in the strongly nonlinear regime, with the final steady state consisting of a spatially repeating pattern of localized spikes. In activator–inhibitor systems such as the two-component Gierer–Meinhardt (GM) model, one can consider the singular limit D a  ≪  D h , where D a and D h are the diffusivities of the activator and inhibitor, respectively. Asymptotic analysis can then be used to analyse the existence and linear stability of multi-spike solutions. In this paper, we analyse multi-spike solutions in a hybrid reaction–transport model, consisting of a slowly diffusing activator and an actively transported inhibitor that switches at a rate α between right-moving and left-moving velocity states. Such a model was recently introduced to account for the formation and homeostatic regulation of synaptic puncta during larval development in Caenorhabditis elegans . We exploit the fact that the hybrid model can be mapped onto the classical GM model in the fast switching limit α  → ∞, which establishes the existence of multi-spike solutions. Linearization about the multi-spike solution yields a non-local eigenvalue problem that is used to investigate stability of the multi-spike solution by combining analytical results for α  → ∞ with a graphical construction for finite α .

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3