Minimum wave speeds in monostable reaction–diffusion equations: sharp bounds by polynomial optimization

Author:

Bramburger Jason J.1ORCID,Goluskin David1ORCID

Affiliation:

1. Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada V8P 5C2

Abstract

Many monostable reaction–diffusion equations admit one-dimensional travelling waves if and only if the wave speed is sufficiently high. The values of these minimum wave speeds are not known exactly, except in a few simple cases. We present methods for finding upper and lower bounds on minimum wave speed. They rely on constructing trapping boundaries for dynamical systems whose heteroclinic connections correspond to the travelling waves. Simple versions of this approach can be carried out analytically but often give overly conservative bounds on minimum wave speed. When the reaction–diffusion equations being studied have polynomial nonlinearities, our approach can be implemented computationally using polynomial optimization. For scalar reaction–diffusion equations, we present a general method and then apply it to examples from the literature where minimum wave speeds were unknown. The extension of our approach to multi-component reaction–diffusion systems is then illustrated using a cubic autocatalysis model from the literature. In all three examples and with many different parameter values, polynomial optimization computations give upper and lower bounds that are within 0.1% of each other and thus nearly sharp. Upper bounds are derived analytically as well for the scalar reaction-diffusion equations.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Auxiliary Functions as Koopman Observables: Data-Driven Analysis of Dynamical Systems via Polynomial Optimization;Journal of Nonlinear Science;2023-10-30

2. Pushed fronts in a Fisher–KPP–Burgers system using geometric desingularization;Nonlinear Differential Equations and Applications NoDEA;2023-10-20

3. Convex computation of maximal Lyapunov exponents;Nonlinearity;2023-09-01

4. The Speed of Traveling Waves in a FKPP-Burgers System;Archive for Rational Mechanics and Analysis;2021-05-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3