Casimir force and its effects on pull-in instability modelled using molecular dynamics simulations

Author:

Sircar Avirup1,Patra Puneet Kumar2ORCID,Batra Romesh C.3

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India

2. Department of Civil Engineering and Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, West Bengal 721302, India

3. Biomedical Engineering and Mechanics, M/C 0219, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

Abstract

We present a new methodology to incorporate the Casimir forces within the molecular dynamics (MD) framework. At atomistic scales, the potential energy between two particles arising due to the Casimir effect can be represented as U ( r ij ) =  C / r 7 . Incorporating the Casimir effect in MD simulations requires the knowledge of C , a problem hitherto unsolved. We overcome this by equating the total potential energy contributions due to each atomistic pair with the potential energy of continuum scale interacting bodies having similar geometries. After having identified the functional form of C , standard MD simulations are augmented with the potential energy contribution due to pairwise Casimir interactions. The developed framework is used to study effects of the Casimir force on the pull-in instability of rectangular and hollow cylindrical shaped deformable electrodes separated by a small distance from a fixed substrate electrode. Our MD results for pull-instability qualitatively agree with the previously reported analytical results but are quantitatively different. The effect of using longer-ranged Casimir forces in a constant temperature environment on the pull-in behaviour has also been studied.

Funder

Science and Engineering Research Board

Indian Institute of Technology Kharagpur

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3