On in-plane drill rotations for Cosserat surfaces

Author:

Mohammadi Saem Maryam1,Lewintan Peter1ORCID,Neff Patrizio1ORCID

Affiliation:

1. Faculty of Mathematics, University of Duisburg-Essen, Thea-Leymann-Str. 9, 45127 Essen, Germany

Abstract

We show under some natural smoothness assumptions that pure in-plane drill rotations as deformation mappings of a C 2 -smooth regular shell surface to another one parametrized over the same domain are impossible provided that the rotations are fixed at a portion of the boundary. Put otherwise, if the tangent vectors of the new surface are obtained locally by only rotating the given tangent vectors, and if these rotations have a rotation axis which coincides everywhere with the normal of the initial surface, then the two surfaces are equal provided they coincide at a portion of the boundary. In the language of differential geometry of surfaces, we show that any isometry which leaves normals invariant and which coincides with the given surface at a portion of the boundary is the identity mapping.

Funder

DFG, German Research Foundation

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference43 articles.

1. Cosserat E, Cosserat F. 1909 Théorie des corps déformables. Paris, France: A. Hermann et fils.

2. Bîrsan M Neff P. 2013 On the characterization of drilling rotation in the 6-parameter resultant shell theory. In Shell structures: theory and applications (eds W Pietraszkiewicz J Gorski). New York NY: CRC Press.

3. On the equations of geometrically nonlinear elastic plates with rotational degrees of freedom;Bîrsan M;Ann. Acad. Rom. Sci.: Ser. Math. Appl.,2012

4. Existence Theorems in the Geometrically Non-linear 6-Parameter Theory of Elastic Plates

5. Existence of minimizers in the geometrically non-linear 6-parameter resultant shell theory with drilling rotations

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3