Predictive modelling of drop ejection from damped, dampened wings by machine learning

Author:

Alam MD Erfanul1ORCID,Wu Dazhong1ORCID,Dickerson Andrew K.1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA

Abstract

The high frequency, low amplitude wing motion that mosquitoes employ to dry their wings inspires the study of drop release from millimetric, forced cantilevers. Our mimicking system, a 10-mm polytetrafluoroethylene cantilever driven through ±1 mm base amplitude at 85 Hz, displaces drops via three principal ejection modes: normal-to-cantilever ejection, sliding and pinch-off. The selection of system variables such as cantilever stiffness, drop location, drop size and wetting properties modulates the appearance of a particular ejection mode. However, the large number of system features complicate the prediction of modal occurrence, and the transition between complete and partial liquid removal. In this study, we build two predictive models based on ensemble learning that predict the ejection mode, a classification problem, and minimum inertial force required to eject a drop from the cantilever, a regression problem. For ejection mode prediction, we achieve an accuracy of 85% using a bagging classifier. For inertial force prediction, the lowest root mean squared error achieved is 0.037 using an ensemble learning regression model. Results also show that ejection time and cantilever wetting properties are the dominant features for predicting both ejection mode and the minimum inertial force required to eject a drop.

Funder

Division of Chemical, Bioengineering, Environmental, and Transport Systems

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predictive modeling of drop impact force on concave targets;Physics of Fluids;2022-10

2. Liquid jet stability through elastic planar nozzles;The European Physical Journal Special Topics;2022-09-14

3. The biomechanics of leaf oscillations during rainfall events;Journal of Experimental Botany;2021-11-17

4. Sessile liquid drops damp vibrating structures;Physics of Fluids;2021-06

5. Water entry dynamics of spheres with heterogeneous wetting properties;Physical Review Fluids;2021-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3