Probabilistic quantification of tsunami current hazard using statistical emulation

Author:

Gopinathan Devaraj1ORCID,Heidarzadeh Mohammad2,Guillas Serge1

Affiliation:

1. Department of Statistical Science, University College London, Gower Street, London WC1E 6BT, UK

2. Department of Civil and Environmental Engineering, Brunel University London, Uxbridge UB8 3PH, UK

Abstract

In this paper, statistical emulation is shown to be an essential tool for the end-to-end physical and numerical modelling of local tsunami impact, i.e. from the earthquake source to tsunami velocities and heights. In order to surmount the prohibitive computational cost of running a large number of simulations, the emulator, constructed using 300 training simulations from a validated tsunami code, yields 1 million predictions. This constitutes a record for any realistic tsunami code to date, and is a leap in tsunami science since high risk but low probability hazard thresholds can be quantified. For illustrating the efficacy of emulation, we map probabilistic representations of maximum tsunami velocities and heights at around 200 locations about Karachi port. The 1 million predictions comprehensively sweep through a range of possible future tsunamis originating from the Makran Subduction Zone (MSZ). We rigorously model each step in the tsunami life cycle: first use of the three-dimensional subduction geometry Slab2 in MSZ, most refined fault segmentation in MSZ, first sediment enhancements of seabed deformation (up to 60% locally) and bespoke unstructured meshing algorithm. Owing to the synthesis of emulation and meticulous numerical modelling, we also discover substantial local variations of currents and heights.

Funder

Royal Society

Natural Environment Research Council

Engineering and Physical Sciences Research Council

Science and Engineering Research Board

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3