Multiphysics modelling of light-actuated liquid crystal elastomers

Author:

Brighenti Roberto1ORCID,Cosma Mattia P.1

Affiliation:

1. Department of Engineering and Architecture, University of Parma, Viale delle Scienze 181/A, 43124 Parma, Italy

Abstract

Liquid crystalline elastomers (LCEs) represent a promising class of responsive polymers whose physical properties are peculiar to both fluids and solids. Thanks to their microscale structure made of elongated rigid molecules (mesogens)—characterized by their capability to reversibly switch from an isotropic to an ordered state—LCEs exhibit a number of remarkable physical effects, such as self-deformation and mechanical actuation triggered by external stimuli. Efficient and physics-based modelling, aimed at designing and optimizing LCE-based devices (such as artificial muscles, deployable structures, soft actuators, etc.), is a fundamental tool to quantitatively describe their mechanical behaviour in real applications. In the present study, we illustrate the multi-physics modelling of light-driven deformation of LCEs, based on the photo-thermal energy conversion. The role played by the light diffusion and heat transfer within the medium is considered and their effect on the obtainable actuation is studied through numerical simulations based on the multi-physics theory developed.

Funder

H2020 Spreading Excellence and Widening Participation

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3