Affiliation:
1. Department of Engineering and Architecture, University of Parma, Viale delle Scienze 181/A, 43124 Parma, Italy
Abstract
Liquid crystalline elastomers (LCEs) represent a promising class of responsive polymers whose physical properties are peculiar to both fluids and solids. Thanks to their microscale structure made of elongated rigid molecules (mesogens)—characterized by their capability to reversibly switch from an isotropic to an ordered state—LCEs exhibit a number of remarkable physical effects, such as self-deformation and mechanical actuation triggered by external stimuli. Efficient and physics-based modelling, aimed at designing and optimizing LCE-based devices (such as artificial muscles, deployable structures, soft actuators, etc.), is a fundamental tool to quantitatively describe their mechanical behaviour in real applications. In the present study, we illustrate the multi-physics modelling of light-driven deformation of LCEs, based on the photo-thermal energy conversion. The role played by the light diffusion and heat transfer within the medium is considered and their effect on the obtainable actuation is studied through numerical simulations based on the multi-physics theory developed.
Funder
H2020 Spreading Excellence and Widening Participation
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献