Selection and evaluation of spherical acquisition trajectories for industrial computed tomography

Author:

Bauer Fabian12ORCID,Goldammer Matthias1,Grosse Christian U.2ORCID

Affiliation:

1. Siemens Corporate Technology, Otto-Hahn-Ring 6, Munich, Germany

2. Chair of Non-Destructive Testing, Technical University of Munich, Franz-Langinger-Strasse 10, Munich, Germany

Abstract

In conventional industrial computed tomography, the source–detector system rotates in equiangular steps in-plane relative to the part of investigation. While being by far the most frequently used acquisition trajectory today, this method has several drawbacks like the formation of cone beam artefacts or limited usability in case of geometrical restrictions. In such cases, the usage of alternative spherical trajectories can be beneficial to improve image quality and defect visibility. While investigations have been performed to relate the influence of the trajectory choice in the typical metrological case of a high number of available projections, so far barely any work has been done for the case of few source–detector poses, which is more relevant in the field of non-destructive testing. In this work, we provide an overview of quantitative metrics that can be used to assess the image quality of reconstructed computed tomography volumes, discuss their advantages and drawbacks and propose a framework to investigate the performance of several non-standard trajectories with respect to previously defined regions of interest. Inspired by pseudorandom sampling methods for Monte–Carlo-algorithms, we also suggest an entirely new trajectory design, the low-discrepancy spherical trajectory, which extends the concept of equiangular planar trajectories into three dimensions and can be used for benchmarking and comparison with other spherical trajectories. Last, we use an optimization method to calculate task-specific acquisition trajectories and relate their performance to other spherical designs.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3