Parametric solutions to the kinematics of developable degree-4 rigid origami vertices

Author:

Hu Yucai1ORCID,Zheng Changjun2,Bi Chuanxing2,Liang Haiyi3

Affiliation:

1. School of Mechanical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China

2. Institute of Sound and Vibration Research, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China

3. CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China

Abstract

Developable degree-4 (DD4) vertices have four facets and four creases and can be unfolded flat. The rigid-folding kinematics of DD4 vertices is rich in that it generally has two folding modes and can get stuck when two facets bind together. To study the full spectrum of the kinematics of DD4 vertices, parametric solutions for fold angles in terms of the cotangents of half-angles are derived from the opposite and adjacent fold angle relationships. It is shown that any two fold angles of a general DD4 vertex are related by the equation of a hyperbola. When the vertex has collinear creases or is flat-foldable, the pertinent hyperbola equations degenerate into linear relationships. Meanwhile, when DD4 vertices are classified into three categories according to Grashof’s criterion, both unique and binding folds can be readily located from the facet with the largest or smallest sector angle. The rigid-folding kinematics of typical vertices is then investigated. In addition to the flat state, the two folding modes can also be switched at the binding states if self-intersection is permitted. The results provide new formulae and clear geometric views on the rigid-folding kinematics of DD4 vertices, which are fundamental for constructing larger origami patterns.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3