Complete complementarity relations and their Lorentz invariance

Author:

Basso Marcos L. W.1ORCID,Maziero Jonas1ORCID

Affiliation:

1. Departamento de Física, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil

Abstract

It is well known that entanglement under Lorentz boosts is highly dependent on the boost scenario in question. For single-particle states, a spin-momentum product state can be transformed into an entangled state. However, entanglement is just one of the aspects that completely characterizes a quantum system. The other two are known as the wave-particle duality. Although the entanglement entropy does not remain invariant under Lorentz boosts, and neither do the measures of predictability and coherence, we show here that these three measures taken together, in a complete complementarity relation (CCR), are Lorentz invariant. Peres et al. (Peres et al. 2002 Phys. Rev. Lett. 88 , 230402. ( doi:10.1103/PhysRevLett.88.230402 )) realized that even though it is possible to formally define spin in any Lorentz frame, there is no relationship between the observable expectation values in different Lorentz frames. Analogously, one can, in principle, define complementary relations in any Lorentz frame, but there is no obvious transformation law relating complementary relations in different frames. However, our result shows that the CCRs have the same value in any Lorentz frame, i.e. there is a transformation law connecting the CCRs. In addition, we explore relativistic scenarios for single and two-particle states, which helps in understanding the exchange of different aspects of a quantum system under Lorentz boosts.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Instituto Nacional de Ciência e Tecnologia de Informação Quântica

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3