Affiliation:
1. Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
Abstract
Minimal surfaces arise as energy minimizers for fluid membranes and are thus found in a variety of biological systems. The tight lamellar structures of the endoplasmic reticulum and plant thylakoids are comprised of such minimal surfaces in which right- and left-handed helical motifs are embedded in stoichiometry suggesting global pitch balance. So far, the analytical treatment of helical motifs in minimal surfaces was limited to the small-slope approximation where motifs are represented by the graph of harmonic functions. However, in most biologically and physically relevant regimes the inter-motif separation is comparable with its pitch, and thus this approximation fails. Here, we present a recipe for constructing exact minimal surfaces with an arbitrary distribution of helical motifs, showing that any harmonic graph can be deformed into a minimal surface by exploiting lateral displacements only. We analyse in detail pairs of motifs of the similar and of opposite handedness and also an infinite chain of identical motifs with similar or alternating handedness. Last, we study the second variation of the area functional for collections of helical motifs with asymptotic helicoidal structure and show that in this subclass of minimal surfaces stability requires that the collection of motifs is pitch balanced.
Funder
Israel Science Foundation
Feinberg Graduate School, Weizmann Institute of Science
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Chiral active membranes: Odd mechanics, spontaneous flows, and shape instabilities;Physical Review Research;2023-12-11
2. Helicoids and vortices;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2022-11