Feedback control of chaotic systems using multiple shooting shadowing and application to Kuramoto–Sivashinsky equation

Author:

Shawki Karim1,Papadakis George1ORCID

Affiliation:

1. Department of Aeronautics, Imperial College London, Exhibition Road, London SW7 2AZ, UK

Abstract

We propose an iterative method to evaluate the feedback control kernel of a chaotic system directly from the system’s attractor. Such kernels are currently computed using standard linear optimal control theory, known as linear quadratic regulator theory. This is however applicable only to linear systems, which are obtained by linearizing the system governing equations around a target state. In the present paper, we employ the preconditioned multiple shooting shadowing (PMSS) algorithm to compute the kernel directly from the nonlinear dynamics, thereby bypassing the linear approximation. Using the adjoint version of the PMSS algorithm, we show that we can compute the kernel at any point of the domain in a single computation. The algorithm replaces the standard adjoint equation (that is ill-conditioned for chaotic systems) with a well-conditioned adjoint, producing reliable sensitivities which are used to evaluate the feedback matrix elements. We apply the idea to the Kuramoto–Sivashinsky equation. We compare the computed kernel with that produced by the standard linear quadratic regulator algorithm and note similarities and differences. Both kernels are stabilizing, have compact support and similar shape. We explain the shape using two-point spatial correlations that capture the streaky structure of the solution of the uncontrolled system.

Funder

Al-Alfi Foundation

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3