Some remarks on the solution of the cell growth equation

Author:

Mirotin Adolf R.12ORCID

Affiliation:

1. Department of Mathematics and Programming Technologies, Francisk Skorina Gomel State University, Gomel 246019, Belarus

2. Belarus and Regional Mathematical Center, Southern Federal University, 344090 Rostov-on-Don, Russia

Abstract

A process of growth and division of cells is modelled by an initial boundary value problem that involves a first-order linear functional partial differential equation, the so-called sell growth equation. The analytical solution to this problem was given in the paper Zaidi et al. (Zaidi et al . 2015 Solutions to an advanced functional partial differential equation of the pantograph type ( Proc. R. Soc. A 471 , 20140947 ( doi:10.1098/rspa.2014.0947 )). In this note, we simplify the arguments given in the paper mentioned above by using the theory of operator semigroups. This theory enables us to prove the existence and uniqueness of the solution and to express this solution in terms of Dyson–Phillips series. The asymptotics of the solution is also discussed from the point of view of the theory of operator semigroups.

Funder

State Program of Scientific Research of Republic of Belarus

Ministry of Education and Science of Russia

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference11 articles.

1. Solutions to an advanced functional partial differential equation of the pantograph type

2. Exponential decay for the fragmentation or cell-division equation

3. A functional differential equation arising in modelling of cell growth

4. Mirotin AR. 2023 Some remarks on the solution of the cell growth equation. (http://arxiv.org/abs/2307.03255v1 [math.AP]).

5. Engel K-J, Nagel R. 2000 One-parameter semigroups for linear evolution equations. New York, NY: Springer.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the spectra of multidimensional normal discrete Hausdorff operators;Mathematical Methods in the Applied Sciences;2024-02-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3