The effect of an exterior electric field on the instability of dielectric plates

Author:

Su Yipin12ORCID,Chen Weiqiu1,Dorfmann Luis3,Destrade Michel12ORCID

Affiliation:

1. Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, People’s Republic of China

2. Stokes Centre for Applied Mathematics, School of Mathematics, Statistics and Applied Mathematics, NUI Galway, University Road, Galway, Ireland

3. Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155, USA

Abstract

We investigate the theoretical nonlinear response, Hessian stability, and possible wrinkling behaviour of a voltage-activated dielectric plate immersed in a tank filled with silicone oil. Fixed rigid electrodes are placed on the top and bottom of the tank, and an electric field is generated by a potential difference between the electrodes. We solve the associated incremental boundary value problem of superimposed, inhomogeneous small-amplitude wrinkles, signalling the onset of instability. We decouple the resulting bifurcation equation into symmetric and antisymmetric modes. For a neo-Hookean dielectric plate, we show that a potential difference between the electrodes can induce a thinning of the plate and thus an increase of its planar area, similar to the scenarios encountered when there is no silicone oil. However, we also find that, depending on the material and geometric parameters, an increasing applied voltage can also lead to a thickening of the plate, and thus a shrinking of its area. In that scenario, Hessian instability and wrinkling bifurcation may then occur spontaneously once some critical voltages are reached.

Funder

Irish Research Council

Shenzhen Scientific and Technological Fund for R&D

National Natural Science Foundation of China

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3