Analysis of a model for surfactant transport around a foam meniscus

Author:

Grassia P.1ORCID

Affiliation:

1. Department of Chemical and Process Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, UK

Abstract

A model developed by Bussonnière & Cantat [ 1 ] is considered for film-to-film surfactant transport around a meniscus within a foam, with the transport rate dependent upon film-to-film tension difference. The model is applied to the case of a five-film device, in which motors are used to compress two peripheral films on one side of a central film and to stretch another two peripheral films on the central film’s other side. Moreover, it is considered that large amounts of compression or stretch are imposed on peripheral films, and also that compression or stretch might be imposed at high velocities (relative to a characteristic velocity associated with physico-chemical properties of the foam films themselves). The actual strain that results on elements within each film might differ from the imposed strain, with the instantaneous film length coupled to the actual strain determining the amount of surfactant currently on each film (and hence also the amount of surfactant that has transferred either from or onto films). Quite distinct surfactant transport behaviour is predicted for the stretched film compared with the compressed one. In particular, when a film is stretched sufficiently at high enough velocity, surfactant flux onto it is predicted to become extremely ‘plastic’, increasing significantly.

Funder

Engineering and Physical Sciences Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Surfactant transport upon foam films moving through porous media;Colloids and Surfaces A: Physicochemical and Engineering Aspects;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3