Creation of discontinuities in circle maps

Author:

Derks G.1,Glendinning P. A.2,Skeldon A. C.1ORCID

Affiliation:

1. Department of Mathematics, University of Surrey, Guildford GU2 7XH, UK

2. Department of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK

Abstract

Circle maps frequently arise in mathematical models of physical or biological systems. Motivated by Cherry flows and ‘threshold’ systems such as integrate and fire neuronal models, models of cardiac arrhythmias, and models of sleep/wake regulation, we consider how structural transitions in circle maps occur. In particular, we describe how maps evolve near the creation of a discontinuity. We show that the natural way to create discontinuities in the maps associated with both threshold systems and Cherry flows results in a singularity in the derivative of the map as the discontinuity is approached from either one or both sides. For the threshold systems, the associated maps have square root singularities and we analyse the generic properties of such maps with gaps, showing how border collisions and saddle-node bifurcations are interspersed. This highlights how the Arnold tongue picture for tongues bordered by saddle-node bifurcations is amended once gaps are present. We also show that a loss of injectivity naturally results in the creation of multiple gaps giving rise to a novel codimension two bifurcation.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Forced Oscillations in a Relay System with Hysteresis;Автоматика и телемеханика;2024-04-15

2. On Forced Oscillations in a Relay System with Hysteresis;Automation and Remote Control;2024-04

3. On Forced Oscillations in a Relay System with Hysteresis;Automation and Remote Control;2024-04

4. The two-process model for sleep–wake regulation: A nonsmooth dynamics perspective;Physica D: Nonlinear Phenomena;2023-02

5. Beyond the Bristol book: Advances and perspectives in non-smooth dynamics and applications;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3