Affiliation:
1. College of Engineering, Swansea University, Bay Campus, Fabian Way, Crymlyn Burrows, Swansea SA1 8EN, UK
Abstract
Elastic instability such as the buckling of cellular materials plays a pivotal role in their analysis and design. Despite extensive research, the quantifi- cation of critical stresses leading to elastic instabi- lities remains challenging due to the inherent nonlinearities. We develop an analytical approach considering the spectral decomposition of the elasticity matrix of two-dimensional hexagonal lattice materials. The necessary and sufficient condition for the buckling is established through the zeros of the eigenvalues of the elasticity matrix. Through the analytical solution of the eigenvalues, the conditions involving equivalent elastic properties of the lattice were directly connected to the mathematical requirement of buckling. The equivalent elastic properties are expressed in closed form using geometric properties of the lattice and trigonometric functions of a non-dimensional axial force parameter. The axial force parameter was identified for four different stress cases, namely, compressive stress in the longitudinal and transverse directions separately and together and torsional stress. By solving the resulting nonlinear equations, we derive exact analytical expressions of critical eigenbuckling stresses for these four cases. Crucial parameter combinations leading to minimum buckling stresses are derived analytically. The exact closed-form analytical expressions derived in the paper can be used for quick engineering design calculations and benchmarking related experimental and numerical studies.
Funder
Marie Sklodowska Curie Actions
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献