Mechanics of tension-induced film wrinkling and restabilization: a review

Author:

Wang Ting1,Yang Yifan1,Xu Fan12ORCID

Affiliation:

1. Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University, 220 Handan Road, Shanghai 200433, People’s Republic of China

2. Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, People’s Republic of China

Abstract

Wrinkling of thin films under tension is omnipresent in nature and modern industry, a phenomenon which has aroused considerable attention during the past two decades because of its intricate nonlinear behaviours and intriguing morphology changes. Here, we review recent advancements in the mechanics of tension-induced film wrinkling and restabilization, by identifying three major stages of its progress: small-strain (less than 5 % ) wrinkling of stiff sheets, finite-strain (up to 30 % ) wrinkling and restabilization (isola-centre bifurcation) of soft films, and the effects of curved configurations and material properties on pattern formation. Growing demand for fundamental understanding, quantitative prediction and precise tracking of secondary bifurcation transitions in morphological evolution of thin films helps to advance finite-strain plate/shell theories and sophisticated modelling methods. This progress not only promotes our insightful understanding of complex instability behaviour but also reveals novel phenomena and sheds light on developing wrinkle-tunable membrane structures and functional surfaces.

Funder

Shanghai Pilot Program for Basic Research-Fudan University

National Natural Science Foundation of China

Shanghai Shuguang Program

Shanghai Rising-Star Program

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3