Modulation theory for soliton resonance and Mach reflection

Author:

Ryskamp Samuel J.1ORCID,Hoefer Mark A.1ORCID,Biondini Gino2ORCID

Affiliation:

1. Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA

2. Department of Mathematics and Department of Physics, State University of New York, Buffalo, NY 14260, USA

Abstract

Resonant Y-shaped soliton solutions to the Kadomtsev–Petviashvili II (KPII) equation are modelled as shock solutions to an infinite family of modulation conservation laws. The fully two-dimensional soliton modulation equations, valid in the zero dispersion limit of the KPII equation, are demonstrated to reduce to a one-dimensional system. In this same limit, the rapid transition from the larger Y soliton stem to the two smaller legs limits to a travelling discontinuity. This discontinuity is a multivalued, weak solution satisfying modified Rankine–Hugoniot jump conditions for the one-dimensional modulation equations. These results are applied to analytically describe the dynamics of the Mach reflection problem, V-shaped initial conditions that correspond to a soliton incident upon an inward oblique corner. Modulation theory results show excellent agreement with direct KPII numerical simulation.

Funder

NSF

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference64 articles.

1. Russell JS1845 Report on waves. In Report of the Fourteenth Meeting of the British Association for the Advancement of Science pp. 311–390. John Murray: London.

2. Über einige mechanische Wirkungen des electrischen Funkens;Mach E;Sitzungsber. Akad. Wiss. Wien,1875

3. The discovery of the Mach reflection effect and its demonstration in an auditorium

4. On the stability of solitary waves in weakly dispersing media;Kadomtsev BB;Sov. Phys. Dokl.,1970

5. Solitons, Nonlinear Evolution Equations and Inverse Scattering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3