Implementing parallel arithmetic via acetylation and its application to chemical image processing

Author:

Dombroski Amanda1ORCID,Oakley Kady1,Arcadia Christopher2,Nouraei Farnaz2,Chen Shui Ling1,Rose Christopher2,Rubenstein Brenda1,Rosenstein Jacob2,Reda Sherief2,Kim Eunsuk1

Affiliation:

1. Department of Chemistry, Brown University, Providence, RI 02912, USA

2. School of Engineering, Brown University, Providence, RI 02912, USA

Abstract

Chemical mixtures can be leveraged to store large amounts of data in a highly compact form and have the potential for massive scalability owing to the use of large-scale molecular libraries. With the parallelism that comes from having many species available, chemical-based memory can also provide the physical substrate for computation with increased throughput. Here, we represent non-binary matrices in chemical solutions and perform multiple matrix multiplications and additions, in parallel, using chemical reactions. As a case study, we demonstrate image processing, in which small greyscale images are encoded in chemical mixtures and kernel-based convolutions are performed using phenol acetylation reactions. In these experiments, we use the measured concentrations of reaction products (phenyl acetates) to reconstruct the output image. In addition, we establish the chemical criteria required to realize chemical image processing and validate reaction-based multiplication. Most importantly, this work shows that fundamental arithmetic operations can be reliably carried out with chemical reactions. Our approach could serve as a basis for developing more advanced chemical computing architectures.

Funder

Defense Advanced Research Projects Agency

National Science Foundation

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3