Scattering of surface waves by a vertical truncated structured cylinder

Author:

Porter R.1ORCID,Zheng S.23ORCID,Liang H.4ORCID

Affiliation:

1. School of Mathematics, Woodland Road, University of Bristol, Bristol, BS8 1UG, UK

2. School of Engineering, Computing and Mathematics, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK

3. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, 116024, China

4. Technology Centre for Offshore and Marine, Singapore (TCOMS), 118411, Singapore

Abstract

This paper describes the solution to the problem of scattering of plane incident waves on water of constant depth by a bottom mounted circular cylinder, extending partially through the depth, which has an internal structure comprised of closely spaced thin vertical barriers between which fluid is allowed to flow. The problem is solved under full depth-dependent linearized water wave theory using an effective medium equation to describe the fluid motion in cylinder and effective boundary conditions to match that flow to the fluid region outside the cylinder. The interest in this problem lies in the development of novel solution methods for fully three-dimensional water wave interaction with bathymetric plate arrays. Results computed using this theory are compared with a shallow water approximation based on the recent work of Marangos & Porter (2021 Shallow water theory for structured bathymetry. Proc. R. Soc. A 477 , 20210421.) and with accurate computations of an exact representation of the geometry using a discrete set of plates. Other results highlight the resonant directional lensing effects of this type of cylindrical plate array device.

Funder

State Key Laboratory of Coastal and Offshore Engineering

Engineering and Physical Sciences Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3