Affiliation:
1. Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411, USA
Abstract
This paper revisits the second law of thermodynamics via certain modifications of the axiomatic foundation provided by the celebrated 1909 work of Carathéodory. It is shown that his postulate of
adiabatic inaccessibility
represents one of several constraints on the energy balance that serve to establish the existence of thermostatic entropy as a foliation of state space, with temperature representing a force of constraint. To achieve the thermostatic version of the second law, as embodied in the postulates of Clausius and Gibbs, work principles are proposed to define thermostatic equilibrium and stability in terms of the convexity properties of internal energy, entropy and related thermostatic potentials. Comparisons are made with the classic work of Coleman and Noll on thermostatic equilibrium in simple continua, resulting in a few unresolved differences. Perhaps the most novel aspect of the current work is an extension to irreversible processes by means of a non-equilibrium entropy derived from recoverable work, which generalizes similar ideas in continuum viscoelasticity. This definition of entropy calls for certain revisions of modern theories of continuum thermomechanics by Coleman, Noll and others that are based on a generally inaccessible entropy and undefined temperature.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献