A theory of stochastic fluvial landscape evolution

Author:

Roberts G. G.12ORCID,Wani O.23

Affiliation:

1. Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK

2. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA

3. Department of Civil and Urban Engineering, New York University, Brooklyn, NY 11201, USA

Abstract

Geometries of eroding landscapes contain important information about geologic, climatic, biotic and geomorphic processes. They are also characterized by variability, which makes disentangling their origins challenging. Observations and physical models of fluvial processes, which set the pace of erosion on most continents, emphasize complexity and variability. By contrast, the spectral content of longitudinal river profiles and similarity of geometries at scales greater than approximately 100 km highlight relatively simple emergent properties. A general challenge then, addressed in this manuscript, is development of a theory of landscape evolution that embraces such scale-dependent insights. We do so by incorporating randomness and probability into a theory of fluvial erosion. First, we explore the use of stochastic differential equations of the Langevin type, and the Fokker–Planck equation, for predicting migration of erosional fronts. Second, analytical approaches incorporating distributions of driving forces, critical thresholds and associated proxies are developed. Finally, a linear programming approach is introduced, that, at its core, treats evolution of longitudinal profiles as a Markovian stochastic problem. The theory is developed essentially from first principles and incorporates physics governing fluvial erosion. We explore predictions of this theory, including the natural growth of discontinuities and scale-dependent evolution, including local complexity and emergent simplicity.

Funder

Natural Environment Research Council

Swiss National Science Foundation

Publisher

The Royal Society

Reference49 articles.

1. Geomorphology

2. The Generation and Scaling of Longitudinal River Profiles

3. Einstein HA. 1950 The bed-load function for sediment transportation in open channel flows. Technical Report 1026 U.S. Dept. of Agriculture Washington DC.

4. A mechanistic-stochastic formulation of bed load particle motions: From individual particle forces to the Fokker-Planck equation under low transport rates

5. A nonlocal theory of sediment transport on hillslopes;Foufoula-Georgiou E;J. Geophys. Res.,2010

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3