Episodic, compression-driven fluid venting in layered sedimentary basins

Author:

Kearney Luke M.1ORCID,MacMinn Christopher W.2ORCID,Katz Richard F.1ORCID,Kirkham Chris1,Cartwright Joe1ORCID

Affiliation:

1. Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK

2. Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK

Abstract

Fluid venting phenomena are prevalent in sedimentary basins globally. Offshore, these localized fluid-expulsion events are archived in the geologic record by the resulting pockmarks at the sea-floor. Venting is widely interpreted to occur via hydraulic fracturing, which requires near-lithostatic pore pressures for initiation. One common driver for these extreme pressures is horizontal tectonic compression, which pressurizes the entire sedimentary column over a wide region. Fluid expulsion leads to a sudden, local relief of this pressure, which then gradually recharges through continued compression, leading to episodic venting. Pressure recharge will also occur through pressure diffusion from neighbouring regions that remain pressurized, but the combined role of compression and pressure diffusion in episodic venting has not previously been considered. Here, we develop a novel poroelastic model for episodic, compression-driven venting. We show that compression and pressure diffusion together set the resulting venting period. We derive a simple analytical expression for this venting period, demonstrating that pressure diffusion can significantly reduce the venting period associated with a given rate of compression. Our expression allows this rate of compression to be inferred from observations of episodic venting. We conclude that pressure diffusion is a major contributor to episodic fluid venting in mudstone-dominated basins.

Funder

Natural Environment Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3