A scaling investigation of pattern in the spread of COVID-19: universality in real data and a predictive analytical description

Author:

Das Subir K.1ORCID

Affiliation:

1. Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore 560064, India

Abstract

We analyse the spread of COVID-19, a disease caused by a novel coronavirus, in various countries by proposing a model that exploits the scaling and other important concepts of statistical physics. Quite expectedly, for each of the considered countries, we observe that the spread at early times occurs exponentially fast. We show how the countries can be classified into groups, like universality classes in the literature of phase transitions, based on the rates of infections during late times. This method brings a new angle to the understanding of disease spread and is useful in obtaining a country-wise comparative picture of the effectiveness of lockdown-like social measures. Strong similarity, during both natural and lockdown periods, emerges in the spreads within countries having varying geographical locations, climatic conditions, population densities and economic parameters. We derive accurate mathematical forms for the corresponding scaling functions and show how the model can be used as a predictive tool, with instruction even for future waves, and, thus, as a guide for optimizing social measures and medical facilities. The model is expected to be of general relevance in the studies of epidemics.

Funder

Science and Engineering Research Board

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference58 articles.

1. https://en.wikipedia.org/wiki/COVID-19-pandemic. The presented data sets are checked to be correct with respect to the latest updates on the website till 25 August 2020.

2. A contribution to the mathematical theory of epidemics

3. Anderson RM. 1982 In Population dynamics of infectious diseases: theory and applications (ed. RM Anderson) pp. 1–37. New York NY: Chapman and Hall.

4. The Mathematics of Infectious Diseases

5. The Physics of Foraging

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3