Machine learning-based security-aware spatial modulation for heterogeneous radio-optical networks

Author:

Khadr Monette H.1ORCID,Elgala Hany1,Rahaim Michael2,Khreishah Abdallah3,Ayyash Moussa4ORCID,Little Thomas5

Affiliation:

1. Electrical and Computer Engineering Department, University at Albany, Albany, NY, USA

2. Engineering Department, University of Massachusetts Boston, Boston, MA, USA

3. Electrical and Computer Engineering Department, New Jersey Institute of Technology, Newark, NJ, USA

4. Department of Chemistry, Physics and Engineering Studies, Chicago State University, Chicago, IL, USA

5. Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA

Abstract

In this article, we propose a physical layer security (PLS) technique, namely security-aware spatial modulation (SA-SM), in a multiple-input multiple-output-based heterogeneous network, wherein both optical wireless communications and radio-frequency (RF) technologies coexist. In SA-SM, the time-domain signal is altered prior to transmission using a key at the physical layer for combating eavesdropping. Unlike conventional PLS techniques, SA-SM does not rely on channel characteristics for securing the information, as its perception is self-imposed, which allows its adoption in radio-optical networks. Additionally, a novel periodical key selection algorithm is proposed. Instead of having multiple keys stored in the nodes, by using off-the-shelf and low-complexity machine learning (ML) methods, including a support vector machine, logistic regression and a single-layer neural network, SA-SM nodes can estimate the used key. Results show that a positive secrecy capacity can be achieved for both the RF and optical links by using 1000 different keys, with a minimal signal-to-noise ratio penalty of less than 5 dB for the legitimate user using SA-SM versus conventional transmission at a bit-error-rate of 10 −4 . The analysis also includes computational time and classification accuracy evaluation of the various proposed ML techniques using different hardware architectures.

Funder

NSF

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3