Force reversal and energy dissipation in composite tubes through nonlinear viscoelasticity of component materials

Author:

Sedal Audrey1ORCID,Wineman Alan1

Affiliation:

1. Department of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, MI 48109, USA

Abstract

Fibre-reinforced, fluid-filled structures are commonly found in nature and emulated in devices. Researchers in the field of soft robotics have used such structures to build lightweight, impact-resistant and safe robots. The polymers and biological materials in many soft actuators have these advantageous characteristics because of viscoelastic energy dissipation. Yet, the gross effects of these underlying viscoelastic properties have not been studied. We explore nonlinear viscoelasticity in soft, pressurized fibre-reinforced tubes, which are a popular type of soft actuation and a common biological architecture. Relative properties of the reinforcement and matrix materials lead to a rich parameter space connecting actuator inputs, loading response and energy dissipation. We solve a mechanical problem in which both the fibre and the matrix are nonlinearly viscoelastic, and the tube deforms into component materials’ nonlinear response regimes. We show that stress relaxation of an actuator can cause the relationship between the working fluid input and the output force to reverse over time compared to the equivalent, non-dissipative case. We further show that differences in design parameter and viscoelastic material properties can affect energy dissipation throughout the use cycle. This approach bridges the gap between viscoelastic behaviour of fibre-reinforced materials and time-dependent soft robot actuation.

Funder

Toyota Research Institute

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Nonlinear Mechanic Model of a Zebrafish Embryo under Microinjection;2021 2nd International Conference on Control, Robotics and Intelligent System;2021-08-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3