Shape reconfiguration through origami folding sets an upper limit on drag

Author:

Marzin Tom1ORCID,de Langre Emmanuel1,Ramananarivo Sophie1ORCID

Affiliation:

1. LadHyX, Department of Mechanics, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France

Abstract

Mechanisms of drag reduction through shape reconfiguration have been extensively studied on model geometries of plates and beams that deform primarily in bending. Adding an origami crease pattern to such plates produces a distinct class of deformation modes, with large shape changes along selected degrees of freedom. Here, we investigate the impact of those creases on reconfiguration processes and on drag, focusing on the waterbomb base as a generic case. When placed in a uniform airflow, this origami unit folds into a compact structure, whose frontal area collapses with increasing flow velocity. It enhances drag reduction to the point that fluid loading eventually ceases to increase with flow speed, reaching an upper limit. We further show that this limit is adjustable through the origami structural parameters: the stiffness and rest angle of the folds, and their pattern. Experimental results, corroborated by a fluid–elastic theoretical model, point to a scenario consistent with the previous literature: reconfiguration is governed by a dimensionless Cauchy number that measures the competition between fluid loading and elastic resistance to deformation, here embodied in creases. This foldable system yet stands out through the rare passive drag-capping lever it provides, a valuable asset for self-protection in strong wind.

Funder

Agence Innovation Défense

Agence Nationale de la Recherche

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3