Stochastic scattering model of anomalous diffusion in arrays of steady vortices

Author:

Buonocore Salvatore1ORCID,Sen Mihir1,Semperlotti Fabio12ORCID

Affiliation:

1. Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA

2. Ray W. Herrick Laboratories, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA

Abstract

We investigate the occurrence of anomalous transport phenomena associated with tracer particles propagating through arrays of steady vortices. The mechanism responsible for the occurrence of anomalous transport is identified in the particle dynamic, which is characterized by long collision-less trajectories (Lévy flights) interrupted by chaotic interactions with vortices. The process is studied via stochastic molecular models that are able to capture the underlying non-local nature of the transport mechanism. These models, however, are not well suited for problems where computational efficiency is an enabling factor. We show that fractional-order continuum models provide an excellent alternative that is able to capture the non-local nature of anomalous transport processes in turbulent environments. The equivalence between stochastic molecular and fractional continuum models is demonstrated both theoretically and numerically. In particular, the onset and the temporal evolution of heavy-tailed diffused fields are shown to be accurately captured, from a macroscopic perspective, by a fractional diffusion equation. The resulting anomalous transport mechanism, for the selected ranges of density of the vortices, shows a superdiffusive nature.

Funder

National Science Foundation

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3