Explorations of certain nonlinear waves of the Boussinesq and Camassa–Holm equations using physics-informed neural networks

Author:

Su Jing-Jing1ORCID,Zhang Sheng1,Lan Peng1,Chen Xiaofeng1

Affiliation:

1. School of Civil Engineering, Central South University, Hunan 410075, People’s Republic of China

Abstract

The Boussinesq and Camassa–Holm equations are, respectively, used to describe the bidirectional and unidirectional motions of small-amplitude waves on shallow water surfaces, but their wave dynamics remain a challenge for almost all conventional numerical methods. In this paper, we use physics-informed neural networks (PINNs), a mesh-free deep learning method, to accurately predict the soliton (peakon) interaction or rogue wave behaviours of both equations with only a few initial and boundary data, providing a method for solving certain numerically unstable fluid systems or extreme wave solutions of regular fluid systems. It is revealed that by decomposing both of the equations into lower-order coupled systems, one can obtain higher-precision wave behaviours, especially for the Camassa–Holm equation. To retrieve certain unknown hydraulic parameters based on the observed wave data, e.g. the water depth, we use a multiple PINN method and stably identify the dynamic parameters in the Boussinesq equation through the association of localized soliton and rogue wave solutions. Furthermore, we compare the PINNs with conventional high-precision time-splitting Fourier spectral (TSFS) method and find that to achieve the same split feature of the Y-shapedsoliton of the Boussinesq equation, PINNs require only one-third of the initial and boundary data of the TSFS method.

Funder

Natural Science Foundation of Hunan Province of China

Fundamental Research Funds for the Central Universities of Central South University

Hunan Provincial Postgraduate Research and Innovation Project

National Natural Science Foundation of China

Publisher

The Royal Society

Reference59 articles.

1. Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond;Boussinesq J;J. Math. Pures Appl.,1872

2. An integral equation for unsteady surface waves and a comment on the Boussinesq equation

3. An integrable shallow water equation with peaked solitons

4. Rogue Waves and Hybrid Solutions of the Boussinesq Equation

5. Optical Solitons in Fibers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3