An efficient multiscale bi-directional PBM-DEM coupling framework to simulate one-dimensional aggregation mechanisms

Author:

Das Ashok1ORCID,De Tarun1ORCID,Kaur Gurmeet1ORCID,Dosta Maksym2,Heinrich Stefan2,Kumar Jitendra3ORCID

Affiliation:

1. Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India

2. Institute of Solids Process Engineering and Particle Technology, Hamburg University of Technology, Hamburg 21073, Germany

3. Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India

Abstract

The mesoscale population balance modelling (PBM) technique is widely used in predicting aggregation processes. The accuracy and efficiency of PBM depend on the formulation of its kernels. A model of the volume- and time-dependent one-dimensional aggregation kernel is developed for predicting the temporal evolution of the considered particulate system. To make the developed model physically relevant, the PBM model needs three unknown parameters as input: volume-dependency in collisions, collision frequency per particle and aggregation probability. For this, the microscale discrete element model (DEM) is used. The system’s collision frequency is extracted periodically using a novel collision detection algorithm that detects and ignores duplicate collisions. Finally, a multiscale bi-directional PBM–DEM coupling framework is presented to simulate the aggregation mechanism. PBM and DEM simulations take place periodically to update the particle size distribution (PSD) and extract the collision-frequency, respectively. The coupling framework successfully explains the dependence between the PSD and the collision frequency. Additionally, computational cost of the algorithm is optimized while maintaining the accuracy of the results. Lastly, the accuracy and efficiency of the developed framework are verified using two different test cases. In one of the examples, a simple aggregation is simulated directly inside the DEM for the first time.

Funder

Alexander von Humboldt-Stiftung

Science and Engineering Research Board

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3