A focusing and defocusing semi-discrete complex short-pulse equation and its various soliton solutions

Author:

Feng Bao-Feng1ORCID,Ling Liming2ORCID,Zhu Zuonong3ORCID

Affiliation:

1. School of Mathematical and Statistical Sciences, The University of Texas Rio Grande Valley Edinburg, Edinburg, TX 78541-2999, USA

2. School of Mathematics, South China University of Technology, Guangzhou 510640, People’s Republic of China

3. School of Mathematical Sciences, Shanghai Jiaotong University, Shanghai 200240, People’s Republic of China

Abstract

In this paper, we are concerned with a semi-discrete complex short-pulse (sdCSP) equation of both focusing and defocusing types, which can be viewed as an analogue to the Ablowitz–Ladik lattice in the ultra-short-pulse regime. By using a generalized Darboux transformation method, various soliton solutions to this newly integrable semi-discrete equation are studied with both zero and non-zero boundary conditions. To be specific, for the focusing sdCSP equation, the multi-bright solution (zero boundary conditions), multi-breather and high-order rogue wave solutions (non-zero boundary conditions) are derived, while for the defocusing sdCSP equation with non-zero boundary conditions, the multi-dark soliton solution is constructed. We further show that, in the continuous limit, all the solutions obtained converge to the ones for its original CSP equation (Ling et al . 2016 Physica D 327 , 13–29 ( doi:10.1016/j.physd.2016.03.012 ); Feng et al . 2016 Phys. Rev. E 93 , 052227 ( doi:10.1103/PhysRevE.93.052227 )).

Funder

the Ministry of Economy and Competitiveness of Spain

National Natural Science Foundation of China

Guangzhou Science and Technology Program

U.S. Department of Defense (DoD), U.S. Air Force for Scientific Research

NSF

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3