An information-theoretic approach to study spatial dependencies in small datasets

Author:

Porfiri Maurizio123ORCID,Ruiz Marín Manuel3

Affiliation:

1. Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA

2. Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA

3. Department of Quantitative Methods, Law and Modern Languages, Technical University of Cartagena, Cartagena, Murcia, Spain

Abstract

From epidemiology to economics, there is a fundamental need of statistically principled approaches to unveil spatial patterns and identify their underpinning mechanisms. Grounded in network and information theory, we establish a non-parametric scheme to study spatial associations from limited measurements of a spatial process. Through the lens of network theory, we relate spatial patterning in the dataset to the topology of a network on which the process unfolds. From the available observations of the spatial process and a candidate network topology, we compute a mutual information statistic that measures the extent to which the measurement at a node is explained by observations at neighbouring nodes. For a class of networks and linear autoregressive processes, we establish closed-form expressions for the mutual information statistic in terms of network topological features. We demonstrate the feasibility of the approach on synthetic datasets comprising 25–100 measurements, generated by linear or nonlinear autoregressive processes. Upon validation on synthetic processes, we examine datasets of human migration under climate change in Bangladesh and motor vehicle deaths in the United States of America. For both these real datasets, our approach is successful in identifying meaningful spatial patterns, begetting statistically-principled insight into the mechanisms of important socioeconomic problems.

Funder

Fundación Séneca

National Science Foundation

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3