Affiliation:
1. Lawrence Livermore National Laboratory, Livermore, CA, USA
Abstract
We demonstrate that the geometric similarity of Taylor’s blast wave persists beyond reflection from an ideal surface. Upon impacting the surface, the spherical symmetry of the blast wave is lost but its cylindrical symmetry endures. As the flow acquires dependence on a second spatial dimension, an analytic solution of the Euler equations becomes elusive. However, the preservation of axisymmetry, geometric similarity and planar symmetry in the presence of a mirror-like surface causes all flow solutions to collapse when scaled by the height of burst (HOB) and the shock arrival time at the surface. The scaled blast volume for any yield, HOB and ambient air density follows a single universal trajectory for all scaled time, both before and after reflection.
Funder
Lawrence Livermore Laboratory Directed Research and Development
National Nuclear Security Administration Mission Effectiveness Program
U.S. Department of Energy
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献