Submarine channels formation driven by turbidity currents interacting with an erodible bed

Author:

Mahato Rajesh K.1ORCID,Dey Subhasish1ORCID,Ali Sk Zeeshan2ORCID

Affiliation:

1. Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India

2. Department of Civil Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502284, Telangana, India

Abstract

In this article, we explore the submarine channel formation driven by the interaction of turbidity currents with an erodible bed. The theoretical analysis considers the three-dimensional continuity and momentum equations of the fluid phase, and the advection–diffusion and Exner equations of the solid phase. The governing equations are linearized by imposing periodic perturbations on the base flow. We study the response of both the base flow (profiles of velocity and suspended sediment concentration) and perturbations (growth rate and perturbation fields) to changes in key parameters related to the flow and sediment transport. The growth rate and the critical wavenumber are examined for a given quintet formed by the gravitational parameter, longitudinal bed slope, sediment concentration at the edge of the driving layer, Rouse number and erosion coefficient. The critical wavenumber reduces with an increase in gravitational parameter, longitudinal bed slope, sediment concentration at the edge of the driving layer and erosion coefficient, while it increases with the Rouse number. For the submarine channel formation, we identify the upper threshold values for the gravitational parameter, longitudinal bed slope, sediment concentration at the edge of the driving layer and erosion coefficient and the lower threshold value for the Rouse number.

Funder

Science and Engineering Research Board

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3