Affiliation:
1. Department of Mathematics, University of Manchester, Manchester, UK
2. Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK
Abstract
We investigate the transport of a solute past isolated sinks in a bounded domain when advection is dominant over diffusion, evaluating the effectiveness of homogenization approximations when sinks are distributed uniformly randomly in space. Corrections to such approximations can be non-local, non-smooth and non-Gaussian, depending on the physical parameters (a Péclet number Pe, assumed large, and a Damköhler number Da) and the compactness of the sinks. In one spatial dimension, solute distributions develop a staircase structure for large
Pe
, with corrections being better described with credible intervals than with traditional moments. In two and three dimensions, solute distributions are near-singular at each sink (and regularized by sink size), but their moments can be smooth as a result of ensemble averaging over variable sink locations. We approximate corrections to a homogenization approximation using a moment-expansion method, replacing the Green’s function by its free-space form, and test predictions against simulation. We show how, in two or three dimensions, the leading-order impact of disorder can be captured in a homogenization approximation for the ensemble mean concentration through a modification to
Da
that grows with diminishing sink size.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献