A review of the diverse applications of bond graphs in biology and physiology

Author:

Akbarpour Ghazani Mehran1ORCID,Pan Michael2ORCID,Tran Kenneth1,Rampadarath Anand13ORCID,Nickerson David P.1

Affiliation:

1. Auckland Bioengineering Institute, University of Auckland , Auckland 1010, New Zealand

2. School of Mathematics and Statistics,Faculty of Science, University of Melbourne , Melbourne, Victoria 3010, Australia

3. The New Zealand Institute for Plant and Food Research Limited , Auckland 1142, New Zealand

Abstract

Computational biology and physiology is an interdisciplinary endeavour, requiring input from biologists, physiologists, mathematicians, chemists, engineers and clinicians. These systems are composed of complex phenomena across disparate temporal and spatial scales, and a holistic understanding of system behaviour typically requires the application of advanced multi-scale models. While many modelling techniques have been used, the bond graph (BG) is the only approach for modelling physical systems, where ‘causality’ is represented graphically. Additionally, the BG approach with its intrinsic properties allows the modular construction of models and verifying the conservation of mass and energy algorithmically. The BG approach has been widely used in engineering and, more recently, has been increasingly applied to biology and physiological systems. In this review, we briefly introduce the concepts and strengths of BG modelling. Following this, we review the history of BGs in modelling cellular mechanisms, biochemical reactions and musculoskeletal and cardiovascular systems. Then, current developments in BG software are reviewed, and opportunities and perspectives on the future application of BGs are discussed.

Funder

Ministry of Business, Innovation and Employment

Health Research Council of New Zealand

Publisher

The Royal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3