On the stability of prestressed beams undergoing nonlinear flexural free oscillations

Author:

Di Gregorio Laura1ORCID,Lacarbonara Walter1ORCID

Affiliation:

1. Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy

Abstract

We study the nonlinear free undamped motions of a hinged-hinged beam exhibiting geometric stretching-induced nonlinearity and arbitrary initial conditions. We treat the governing integral-partial-differential equation of motion as an infinite dimensional Hamiltonian system. We analytically obtain a quantitative Birkhoff Normal Form via a nonlinear coordinate transformation that yields the reduced (modulation) equations describing the free oscillations to within a certain nonlinear order with an estimate of the reminder. The obtained solutions provide a very precise description of small amplitude oscillations over large time scales. The analytical optimization of the involved estimates yields time stability results obtained for plausible values of the physical quantities and of the perturbation parameter. The role played by internal resonances in determining the time stability of the solution is highlighted and discussed. We show that initial conditions with a finite number of eigenfunctions yield bounded solutions living on invariant subspaces of the involved modes at all times. Conversely, initial conditions comprising the full (infinite) spectrum of eigenfunctions provide solutions for which time stability for all times cannot be stated.

Funder

Italian Ministry

CUP

European Union

Publisher

The Royal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3