Waves in the Earth’s core. III. A perturbative approach to quasi-free-decay modes

Author:

Maitra Matthew1ORCID,Luo Jiawen1ORCID,Jackson Andrew1ORCID

Affiliation:

1. Institut für Geophysik, ETH Zürich, Sonneggstrasse 5, Zürich 8092, Switzerland

Abstract

We consider the canonical problem of magnetic field decay in an electrically conducting fluid ball. The problem is closely allied to the problem of the decay modes of a rigid ball, and the spatial form of the eigenmodes survives largely intact. The decaying but oscillatory behaviour of the new fluid eigenmodes first discovered by Schmitt a decade ago (and named quasi-free-decay (QFD) modes) is deduced by application of perturbation methods to the case of rapid rotation and a static applied background magnetic field that is uniform and axial. Some, but not all, of the rigid-case poloidal eigenmodes share decay rates with other toroidal modes, necessitating the use of both degenerate and non-degenerate perturbation theory within this paper. The perturbation theory is developed in terms of the Elsasser number Λ (measuring the competition between Coriolis and Lorentz forces), and the analytic results are in striking accord with numerical calculations even when Λ is of O ( 1 ) . We find linear scaling of the QFD eigenfrequency with Λ and small changes in the decay rate that scale with Λ 2 . Although the modes are overdamped (quality factor Q < 1 ), they are not strongly overdamped when the applied field is strong Λ 1 .

Funder

H2020 European Research Council

Engineering and Physical Sciences Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3