Differential invariant method for seeking nonlocally related systems and nonlocal symmetries. I: General theory and examples

Author:

Bluman George W.1ORCID,de la Rosa Rafael2ORCID,Santos Bruzón María2ORCID,Luz Gandarias María2ORCID

Affiliation:

1. Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2

2. Departamento de Matemáticas, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain

Abstract

Nonlocally related systems, obtained through conservation law and symmetry-based methods, have proved to be useful for determining nonlocal symmetries, nonlocal conservation laws, non-invertible mappings and new exact solutions of a given partial differential equation (PDE) system. In this paper, it is shown that the symmetry-based method is a differential invariant-based method. It is shown that this allows one to naturally extend the symmetry-based method to ordinary differential equation (ODE) systems and to PDE systems with at least three independent variables. In particular, we present the situations for ODE systems, PDE systems with two independent variables and PDE systems with three or more independent variables, separately, and show that these three situations are directly connected. Examples are exhibited for each of the three situations.

Funder

Natural Sciences and Engineering Research Council of Canada

Junta de Andalucía group FQM-201

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference25 articles.

1. Similarity, Self-Similarity, and Intermediate Asymptotics

2. Bianchi L. 1918 Lezioni sulla Teoria dei Gruppi Continui Finiti di Transformazioni. Pisa, Italy: Enrico Spoerri.

3. Bluman GW, Anco SC. 2002 Symmetry and integration methods for differential equations. New York, NY: Springer.

4. Symmetries and Differential Equations

5. Applications of Lie Groups to Differential Equations

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3