Stochastic models of ventilation driven by opposing wind and buoyancy

Author:

Andrian Veronica1,Craske John1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering,Imperial College London, London SW7 2AZ, UK

Abstract

Stochastic versions of a classical model for natural ventilation are proposed and investigated to demonstrate the effect of random fluctuations on stability and predictability. In a stochastic context, the well-known deterministic result that ventilation driven by the competing effects of buoyancy and wind admits multiple steady states can be misleading. With fluctuations in the buoyancy exchanged with an external environment modelled as a Wiener process, such systems tend to reside in the vicinity of global minima of their potential, rather than states associated with metastable equilibria. For a heated space with a leeward low-level and windward high-level opening, sustained buoyancy-driven flow opposing the wind direction is unlikely for wind strengths exceeding a statistically critical value, which is slightly larger than the critical value of the wind strength at which bifurcation in the deterministic system occurs. When fluctuations in the applied wind strength are modelled as an Ornstein–Uhlenbeck process, the topology of the system’s potential is effectively modified due to the nonlinear role that wind strength has in the equation for buoyancy conservation. Consequently, large fluctuations in the wind of sufficient duration rule out the possibility of sustained ventilation opposing the wind direction at large base wind strengths.

Funder

Engineering and Physical Sciences Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3