Affiliation:
1. Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
Abstract
Winkler’s mattress model is often used as a simplified model to understand how a thin elastic layer, such as a coating, deforms when subject to a distributed normal load: the deformation of the layer is assumed proportional to the applied normal load. This simplicity means that the Winkler model has found a wide range of applications from soft matter to geophysics. However, in the limit of an incompressible elastic layer the model predicts infinite resistance to deformation, and hence breaks down. Since many of the thin layers used in applications are elastomeric, and hence close to incompressible, we consider the question of when the Winkler model is appropriate for such layers. We formally derive a model that interpolates between the Winkler and incompressible limits for thin elastic layers, and illustrate this model by detailed consideration of two example problems: the point-indentation of a coated elastomeric layer and self-sustained lift in soft elastohydrodynamic lubrication. We find that the applicability (or otherwise) of the Winkler model is not determined by the value of the Poisson ratio alone, but by a compressibility parameter that combines the Poisson ratio with a measure of the layer’s slenderness, which itself depends on the problem under consideration.
Funder
H2020 European Research Council
Engineering and Physical Sciences Research Council
Leverhulme Trust
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献