Validity of Winkler’s mattress model for thin elastomeric layers: beyond Poisson’s ratio

Author:

Chandler Thomas G. J.1ORCID,Vella Dominic1ORCID

Affiliation:

1. Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK

Abstract

Winkler’s mattress model is often used as a simplified model to understand how a thin elastic layer, such as a coating, deforms when subject to a distributed normal load: the deformation of the layer is assumed proportional to the applied normal load. This simplicity means that the Winkler model has found a wide range of applications from soft matter to geophysics. However, in the limit of an incompressible elastic layer the model predicts infinite resistance to deformation, and hence breaks down. Since many of the thin layers used in applications are elastomeric, and hence close to incompressible, we consider the question of when the Winkler model is appropriate for such layers. We formally derive a model that interpolates between the Winkler and incompressible limits for thin elastic layers, and illustrate this model by detailed consideration of two example problems: the point-indentation of a coated elastomeric layer and self-sustained lift in soft elastohydrodynamic lubrication. We find that the applicability (or otherwise) of the Winkler model is not determined by the value of the Poisson ratio alone, but by a compressibility parameter that combines the Poisson ratio with a measure of the layer’s slenderness, which itself depends on the problem under consideration.

Funder

H2020 European Research Council

Engineering and Physical Sciences Research Council

Leverhulme Trust

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stability of gravity-driven viscous films flowing down a soft cylinder;Physical Review Fluids;2024-09-09

2. Plateau-Rayleigh instability of a viscous film on a soft fiber;Europhysics Letters;2024-03-01

3. Fluid-Elastic Interactions Near Contact at Low Reynolds Number;Annual Review of Fluid Mechanics;2024-01-19

4. Oscillatory flows in compliant conduits at arbitrary Womersley number;Physical Review Fluids;2023-12-20

5. Lift at low Reynolds number;The European Physical Journal E;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3